Proto Plus for Python Documentation

Luke Sneeringer

Oct 25, 2021

Contents

1 Installing

2 Table of Contents

2.1 Messageso
22 Felds

2.3 Type Marshaling
Python Module Index
Index

2.4 Status L. e
25 Reference

Proto Plus for Python Documentation

Beautiful, Pythonic protocol buffers.

This library provides a clean, readable, straightforward pattern for declaraing messages in protocol buffers. It provides
a wrapper around the official implementation, so that using messages feels natural while retaining the power and
flexibility of protocol buffers.

Contents 1

https://developers.google.com/protocol-buffers/

Proto Plus for Python Documentation

2 Contents

CHAPTER 1

Installing

Install this library using pip:

$ pip install proto-plus

This library carries a dependency on the official implementation (protobuf), which may install a C component.

https://pypi.org/project/protobuf/

Proto Plus for Python Documentation

4 Chapter 1. Installing

CHAPTER 2

Table of Contents

2.1 Messages

The fundamental building block in protocol buffers are messages. Messages are essentially permissive, strongly-typed
structs (dictionaries), which have zero or more fields that may themselves contain primitives or other messages.

syntax = "proto3";

message Song {
Composer composer = 1;
string title = 2;
string lyrics = 3;
int32 year = 4;

message Composer {
string given_name = 1;
string family_name = 2;

The most common use case for protocol buffers is to write a . proto file, and then use the protocol buffer compiler
to generate code for it.

2.1.1 Declaring messages

However, it is possible to declare messages directly. This is the equivalent message declaration in Python, using this
library:

import proto

class Composer (proto.Message) :
given_name = proto.Field(proto.STRING, number=1)

(continues on next page)

https://developers.google.com/protocol-buffers/docs/proto3#simple

Proto Plus for Python Documentation

(continued from previous page)

family_name = proto.Field(proto.STRING, number=2)

class Song(proto.Message) :
composer = proto.Field(Composer, number=1)
title = proto.Field(proto.STRING, number=2)
lyrics = proto.Field(proto.STRING, number=3)
year = proto.Field(proto.INT32, number=4)

A few things to note:
¢ This library only handles proto3.
e The number is really a field ID. It is not a value of any kind.

 All fields are optional (as is always the case in proto3). The only general way to determine whether a field was
explicitly set to its falsy value or not set all is to mark it optional.

* Because all fields are optional, it is the responsibility of application logic to determine whether a necessary field
has been set.

Messages are fundamentally made up of Fields. Most messages are nothing more than a name and their set of fields.

2.1.2 Usage

Instantiate messages using either keyword arguments or a dict (and mix and matching is acceptable):

>>> song = Song(
composer={'given_name': 'Johann', 'family_ name': 'Pachelbel'},
title="'Canon in D',
year=1680,

)
>>> song.composer.family_name
'Pachelbel’
>>> song.title
'Canon in D'

2.1.3 Assigning to Fields

One of the goals of proto-plus is to make protobufs feel as much like regular python objects as possible. It is possible
to update a message’s field by assigning to it, just as if it were a regular python object.

song = Song ()
song.composer = Composer (given_name="Johann", family_name="Bach")

Can also assign from a dictionary as a convenience.
song.composer = {"given_name": "Claude", "family_name": "Debussy"}

Repeated fields can also be assigned
class Album(proto.Message) :
songs = proto.RepeatedField(Song, number=1)

a = Album()
songs = [Song(title="Canon in D"), Song(title="Little Fugue")]
a.songs = songs

6 Chapter 2. Table of Contents

https://docs.python.org/3/library/stdtypes.html#dict

Proto Plus for Python Documentation

Note: Assigning to a proto-plus message field works by making copies, not by updating references. This is necessary
because of memory layout requirements of protocol buffers. These memory constraints are maintained by the protocol

buffers runtime. This behavior can be surprising under certain circumstances, e.g. trying to save an alias to a nested
field.

proto.Message defines a helper message, copy_from () to help make the distinction clear when reading code.
The semantics of copy_ from () are identical to the field assignment behavior described above.

composer = Composer (given_name="Johann", family_name="Bach")
song = Song(title="Tocatta and Fugue in D Minor", composer=composer)
composer.given_name = "Wilhelm"

'composer' is NOT a reference to song.composer
assert song.composer.given_name == "Johann"

We CAN update the song's composer by assignment.
song.composer = composer
composer.given_name = "Carl"

'composer' is STILL not a referene to song.composer.
assert song.composer.given_name == "Wilhelm"

It does work in reverse, though,

1f we want a reference we can access then update.
composer = song.composer

composer.given_name = "Gottfried"

assert song.composer.given_name == "Gottfried"

We can use 'copy_ from' if we're concerned that the code

implies that assignment involves references.

composer = Composer (given_name="Elisabeth", family_name="Bach")

We could also do Message.copy_from(song.composer, composer) instead.
Composer.copy_from(song.composer, composer)

assert song.composer.given_name == "Elisabeth"

2.1.4 Enums

Enums are also supported:

import proto

class Genre (proto.Enum) :
GENRE_UNSPECIFIED = 0
CLASSICAL = 1
JAZZ = 2
ROCK = 3

class Composer (proto.Message) :
given_name = proto.Field(proto.STRING, number=1)

family_name = proto.Field(proto.STRING, number=2)

class Song(proto.Message) :

(continues on next page)

2.1. Messages 7

Proto Plus for Python Documentation

(continued from previous page)

composer = proto.Field(Composer, number=1)
title = proto.Field(proto.STRING, number=2)
lyrics = proto.Field(proto.STRING, number=3)
year = proto.Field(proto.INT32, number=4)
genre = proto.Field(Genre, number=5)

All enums must begin with a 0 value, which is always the default in proto3 (and, as above, indistuiguishable from
unset).

Enums utilize Python enum. Int Enum under the hood:

>>> song = Song(
composer={'given_name': 'Johann', 'family_name': 'Pachelbel'},
title='Canon in D',
year=1680,

genre=Genre.CLASSICAL,

)
>>> song.genre
<Genre.CLASSICAL: 1>
>>> song.genre.name
'CLASSICAL'
>>> song.genre.value
1

Additionally, it is possible to provide strings or plain integers:

>>> song.genre = 2

>>> song.genre

<Genre.JAZZ: 2>

>>> song.genre = 'CLASSICAL'
<Genre.CLASSICAL: 1>

2.1.5 Serialization

Serialization and deserialization is available through the serialize () and deserialize () class methods.

The serialize () method is available on the message classes only, and accepts an instance:

serialized_song = Song.serialize (song)

The deserialize () method accepts a bytes, and returns an instance of the message:

song = Song.deserialize (serialized_song)

JSON serialization and deserialization are also available from message classes via the to_json () and
from_json () methods.

json = Song.to_json (song)

new_song = Song.from_json (json)

Similarly, messages can be converted into dictionaries via the to_dict () helper method. There is no
from_dict () method because the Message constructor already allows construction from mapping types.

8 Chapter 2. Table of Contents

https://docs.python.org/3/library/enum.html#enum.IntEnum
https://docs.python.org/3/library/stdtypes.html#bytes

Proto Plus for Python Documentation

song_dict = Song.to_dict (song)

new_song = Song (song_dict)

Note: Protobuf messages CANNOT be safely pickled or unpickled. This has serious consequences for programs
that use multiprocessing or write messages to files. The preferred mechanism for serializing proto messages is

serialize().

Multiprocessing example:

import proto
from multiprocessing import Pool

class Composer (proto.Message) :
name = proto.Field(proto.STRING, number=1)
genre = proto.Field(proto.STRING, number=2)

composers = [Composer (name=n) for n in ["Bach", "Mozart", "Brahms", "Strauss"]]

with multiprocessing.Pool(2) as p:
def add_genre (comp_bytes) :
composer = Composer.deserialize (comp_bytes)
composer.genre = "classical"
return Composer.serialize (composer)

updated_composers = [

Composer.deserialize (comp_bytes)

for comp_bytes in p.map (add_genre, (Composer.serialize (comp) for comp in_,
—composers))

]

2.2 Fields

Fields are assigned using the F'ie1d class, instantiated within a Message declaration.

Fields always have a type (either a primitive, a message, or an enum) and a number.

import proto

class Composer (proto.Message) :
given_name = proto.Field(proto.STRING, number=1)
family_name = proto.Field(proto.STRING, number=2)

class Song(proto.Message) :
composer = proto.Field(Composer, number=1)
title = proto.Field(proto.STRING, number=2)
lyrics = proto.Field(proto.STRING, number=3)
year = proto.Field(proto.INT32, number=4)

For messages and enums, assign the message or enum class directly (as shown in the example above).

Note: For messages declared in the same module, it is also possible to use a string with the message class’ name if

2.2, Fields

Proto Plus for Python Documentation

the class is not yet declared, which allows for declaring messages out of order or with circular references.

2.2.1 Repeated fields

Some fields are actually repeated fields. In protocol buffers, repeated fields are generally equivalent to typed lists. In
protocol buffers, these are declared using the repeated keyword:

message Album {
repeated Song songs = 1;
string publisher = 2;

Declare them in Python using the RepeatedField class:

class Album(proto.Message) :
songs = proto.RepeatedField(Song, number=1)
publisher = proto.Field(proto.STRING, number=2)

Note: Elements must be appended individually for repeated fields of struct. Value.

class Row (proto.Message) :
values = proto.RepeatedField(proto.MESSAGE, number=1, message=struct.Value,)

>>> row = Row ()

>>> values = [struct_pb2.Value (string_value="hello")]
>>> for v in values:

>>> row.values.append (v)

Direct assignment will result in an error.

class Row (proto.Message) :
values = proto.RepeatedField(proto.MESSAGE, number=1, message=struct.Value,)

>>> row = Row ()

>>> row.values = [struct_pb2.Value (string_value="hello")]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/usr/local/google/home/busunkim/github/python-automl/.nox/unit-3-8/1ib/python3.

—8/site-packages/proto/message.py", line 543, in __ setattr_
self._pb.MergeFrom(self._meta.pb (**{key: pb_value}))

TypeError: Value must be iterable

2.2.2 Map fields

Similarly, some fields are map fields. In protocol buffers, map fields are equivalent to typed dictionaries, where the
keys are either strings or integers, and the values can be any type. In protocol buffers, these use a special map syntax:

message Album {
map<uint32, Song> track_list = 1;
string publisher = 2;

10 Chapter 2. Table of Contents

Proto Plus for Python Documentation

Declare them in Python using the MapField class:

class Album(proto.Message) :
track_list = proto.MapField(proto.UINT32, Song, number=1)
publisher = proto.Field(proto.STRING, number=2)

2.2.3 Oneofs (mutually-exclusive fields)

Protocol buffers allows certain fields to be declared as mutually exclusive. This is done by wrapping fields in a oneof
syntax:

import "google/type/postal_address.proto";

message AlbumPurchase ({
Album album = 1;
oneof delivery {
google.type.PostalAddress postal_ address = 2;
string download_uri = 3;

When using this syntax, protocol buffers will enforce that only one of the given fields is set on the message, and setting
a field within the oneof will clear any others.

Declare this in Python using the oneof keyword-argument, which takes a string (which should match for all fields
within the oneof):

from google.type.postal_address import PostalAddress

class AlbumPurchase (proto.Message) :
album = proto.Field(Album, number=1)
postal_address = proto.Field(PostalAddress, number=2, oneof='delivery')
download_uri = proto.Field(proto.STRING, number=3, oneof='delivery")

Warning: oneof fields must be declared consecutively, otherwise the C implementation of protocol buffers will
reject the message. They need not have consecutive field numbers, but they must be declared in consecutive order.

Warning: If a message is constructed with multiple variants of a single oneof passed to its constructor, the last
keyword/value pair passed will be the final value set.

This is consistent with PEP-468, which specifies the order that keyword args are seen by called functions, and with
the regular protocol buffers runtime, which exhibits the same behavior.

Example:

import proto

class Song(proto.Message) :
name = proto.Field(proto.STRING, number=1, oneof="identifier")
database_id = proto.Field(proto.STRING, number=2, oneof="identifier™)

s = Song(name="Canon in D minor", database_id="b5a37aad3")
assert "database_id" in s and "name" not in s

s = Song(database id="e62a708c7e", name="Little Fugue")
assert "name" in s and "database_id" not in s

2.2, Fields 11

https://www.python.org/dev/peps/pep-0468/

Proto Plus for Python Documentation

2.2.4 Optional fields

All fields in protocol buffers are optional, but it is often necessary to check for field presence. Sometimes legitimate
values for fields can be falsy, so checking for truthiness is not sufficient. Proto3 v3.12.0 added the opt ional keyword

to field descriptions, which enables a mechanism for checking field presence.

In proto plus, fields can be marked as optional by passing optional=True in the constructor. The message class
then gains a field of the same name that can be used to detect whether the field is present in message instances.

class Song(proto.Message) :

composer = proto.Field (Composer, number=1)
title = proto.Field(proto.STRING, number=2)
lyrics = proto.Field(proto.STRING, number=3)
year = proto.Field(proto.INT32, number=4)

performer = proto.Field(proto.STRING,

>>> s = Song(
composer={'given_name': 'Johann',
title='Canon in D',
year=1680,

genre=Genre.CLASSICAL,
)

>>> Song.performer in s

False

>>> s.performer = 'Brahms'
>>> Song.performer in s
True

>>> del s.performer

>>> Song.performer in s

False

>>> s.performer = "" # The mysterious,
>>> Song.performer in s

True

'family_name':

unnamed composer

optional=True)

'Pachelbel'},

Under the hood, fields marked as optional are implemented via a synthetic one-variant oneof. See the protocolbuffers

documentation for more information.

2.3 Type Marshaling

Proto Plus provides a service that converts between protocol buffer objects and native Python types (or the wrapper

types provided by this library).

This allows native Python objects to be used in place of protocol buffer messages where appropriate. In all cases, we

return the native type, and are liberal on what we accept.

2.3.1 Well-known types

The following types are currently handled by Proto Plus:

12

Chapter 2. Table of Contents

https://github.com/protocolbuffers/protobuf/blob/v3.12.0/docs/field_presence.md

Proto Plus for Python Documentation

Protocol buffer type Python type Nullable
google.protobuf.BoolValue bool Yes
google.protobuf.BytesValue bytes Yes
google.protobuf.DoubleValue | float Yes
google.protobuf.Duration datetime.timedelta | —
google.protobuf.FloatValue float Yes
google.protobuf.Int32Value int Yes
google.protobuf.Int64Value int Yes
google.protobuf.ListValue MutableSequence Yes
google.protobuf.StringValue | str Yes
google.protobuf.Struct MutableMapping Yes
google.protobuf.Timestamp datetime.datetime Yes
google.protobuf.UInt32Value | int Yes
google.protobuf.UInt64Value | int Yes
google.protobuf.Value JSON-encodable values Yes

Note:

Protocol buffers include well-known types for Timestamp and Duration, both of which have nanosec-

ond precision. However, the Python datetime and timedelta objects have only microsecond precision. This
library converts timestamps to an implementation of datetime.datetime, DatetimeWithNanoseconds, that in-
cludes nanosecond precision.

If you write a timestamp field using a Python dat et ime value, any existing nanosecond precision will be overwritten.

Note: Setting a bytes field from a string value will first base64 decode the string. This is necessary to preserve
the original protobuf semantics when converting between Python dicts and proto messages. Converting a message
containing a bytes field to a dict will base64 encode the bytes field and yield a value of type str.

import proto
from google.protobuf. json_format import ParseDict

class MyMessage (proto.Message) :
data = proto.Field(proto.BYTES, number=1)

MyMessage (data=b"this is a message")

MyMessage.to_dict (msqg)

msg =
msg_dict =

Note: the value is the base64 encoded string of the bytes field.
It has a type of str, NOT bytes.

assert type(msg_dict['data']) == str
msg_pb = ParseDict (msg_dict,
msg_two = MyMessage (msg_dict)

MyMessage.pb ())

assert msg

msg_pb == msg_two

2.3.2 Wrapper types

Additionally, every Mes sage subclass is a wrapper class. The creation of the class also creates the underlying protocol
buffer class, and this is registered to the marshal.

2.3. Type Marshaling 13

Proto Plus for Python Documentation

The underlying protocol buffer message class is accessible with the pb () class method.

2.4 Status

2.4.1 Features and Limitations

Nice things this library does:
* Idiomatic protocol buffer message representation and usage.

* Wraps the official protocol buffers implementation, and exposes its objects in the public API so that they are
available where needed.

2.4.2 Upcoming work

* Specialized behavior for google.protobuf.FieldMask objects.

2.5 Reference

Below is a reference for the major classes and functions within this module.

e The Message and Field section (which uses the message and fields modules) handles constructing mes-
sages.

* The Marshal module handles translating between internal protocol buffer instances and idiomatic equivalents.

* The Datetime Helpers has datetime related helpers to maintain nanosecond precision.

2.5.1 Message and Field
class proto.message.Message (mapping=None, *, ignore_unknown_fields=False, **kwargs)
The abstract base class for a message.
Parameters

* mapping (Union[dict, Message])— A dictionary or message to be used to deter-
mine the values for this message.

e ignore_unknown_fields (Optional (bool)) - If True, do not raise errors for un-
known fields. Only applied if mapping is a mapping type or there are keyword parameters.

* kwargs (dict)— Keys and values corresponding to the fields of the message.

classmethod pb (0obj=None, *, coerce: bool = False)
Return the underlying protobuf Message class or instance.

Parameters
* obj —If provided, and an instance of c1s, return the underlying protobuf instance.

* coerce (bool) — If provided, will attempt to coerce obj to cls if it is not already an
instance.

classmethod wrap (pb)
Return a Message object that shallowly wraps the descriptor.

14 Chapter 2. Table of Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

Proto Plus for Python Documentation

Parameters pb — A protocol buffer object, such as would be returned by pb ().

classmethod serialize (instance) — bytes
Return the serialized proto.

Parameters instance — An instance of this message type, or something compatible (accepted
by the type’s constructor).

Returns The serialized representation of the protocol buffer.
Return type bytes

classmethod deserialize (payload: bytes) — proto.message.Message
Given a serialized proto, deserialize it into a Message instance.

Parameters payload (bytes) — The serialized proto.
Returns An instance of the message class against which this method was called.

Return type Message

classmethod to_ json (instance, * use_integers_for_enums=True, includ-
ing_default_value_fields=True, preserving_proto_field_name=False)
— Str

Given a message instance, serialize it to json
Parameters

* instance — Aninstance of this message type, or something compatible (accepted by the
type’s constructor).

* use_integers_for_enums (Optional (bool)) — An option that determines
whether enum values should be represented by strings (False) or integers (True). Default
is True.

* preserving proto_field name (Optional (bool)) — An option that deter-
mines whether field name representations preserve proto case (snake_case) or use low-
erCamelCase. Default is False.

Returns The json string representation of the protocol buffer.
Return type str

classmethod from_json (payload, *, ignore_unknown_fields=False) — proto.message.Message
Given a json string representing an instance, parse it into a message.

Parameters
* paylod — A json string representing a message.

¢ ignore_unknown_fields (Optional (bool)) — If True, do not raise errors for
unknown fields.

Returns An instance of the message class against which this method was called.
Return type Message

classmethod to_dict (instance, *, use_integers_for_enums=True, preserv-
ing_proto_field_name=True, including_default_value_fields=True) —

proto.message.Message
Given a message instance, return its representation as a python dict.

Parameters

* instance — Aninstance of this message type, or something compatible (accepted by the
type’s constructor).

2.5.

Reference 15

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Proto Plus for Python Documentation

* use_integers_for_enums (Optional (bool)) — An option that determines
whether enum values should be represented by strings (False) or integers (True). Default
is True.

* preserving proto_field name (Optional (bool)) — An option that deter-
mines whether field name representations preserve proto case (snake_case) or use low-
erCamelCase. Default is True.

* including_default_value_fields (Optional (bool))— An option that de-
termines whether the default field values should be included in the results. Default is True.

Returns

A representation of the protocol buffer using pythonic data structures. Messages and
map fields are represented as dicts, repeated fields are represented as lists.

Return type dict

classmethod copy_from (instance, other)
Equivalent for protobuf.Message.CopyFrom

Parameters
* instance — An instance of this message type

* other — (Union[dict, ~.Message): A dictionary or message to reinitialize the values for
this message.

class proto.fields.Field (profo_type, *, number: int, message=None, enum=None, oneof: str =

None, json_name: str = None, optional: bool = False)
A representation of a type of field in protocol buffers.

descriptor
Return the descriptor for the field.

name
Return the name of the field.

package
Return the package of the field.

pb_type
Return the composite type of the field, or the primitive type if a primitive.

class proto.fields.MapField (key_type, value_type, *, number: int, message=None, enum=None)
A representation of a map field in protocol buffers.

class proto.fields.RepeatedField (proto_type, *, number: int, message=None, enum=None,
oneof: str = None, json_name: str = None, optional: bool

= Fualse)
A representation of a repeated field in protocol buffers.

class proto.enums.Enum
A enum object that also builds a protobuf enum descriptor.

class proto.enums.ProtoEnumMeta
A metaclass for building and registering protobuf enums.

2.5.2 Marshal

class proto.marshal.Marshal (* name: str)
The translator between protocol buffer and Python instances.

16 Chapter 2. Table of Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

Proto Plus for Python Documentation

The bulk of the implementation is in BaseMarshal. This class adds identity tracking: multiple instantiations
of Marshal with the same name will provide the same instance.

2.5.3 Datetime Helpers

Helpers for datet ime.

class proto.datetime_helpers.DatetimeWithNanoseconds
Track nanosecond in addition to normal datetime attrs.

Nanosecond can be passed only as a keyword argument.

classmethod from_ rfc3339 (stamp)
Parse RFC3339-compliant timestamp, preserving nanoseconds.

Parameters stamp (st r)— RFC3339 stamp, with up to nanosecond precision
Returns an instance matching the timestamp string

Return type DatetimeWithNanoseconds

Raises ValueError —if stamp does not match the expected format

classmethod from timestamp_pb (stamp)
Parse RFC3339-compliant timestamp, preserving nanoseconds.

Parameters stamp (Timestamp) — timestamp message
Returns an instance matching the timestamp message
Return type DatetimelWWithNanoseconds

nanosecond
nanosecond precision.

Type Read-only

replace (*args, **kw)
Return a date with the same value, except for those parameters given new values by whichever keyword
arguments are specified. For example, if d == date(2002, 12, 31), then d.replace(day=26) == date(2002,
12, 26). NOTE: nanosecond and microsecond are mutually exclusive arguemnts.

rfe3339 ()
Return an RFC3339-compliant timestamp.

Returns Timestamp string according to RFC3339 spec.
Return type (str)

timestamp_pb ()
Return a timestamp message.

Returns Timestamp message

Return type (Timestamp)

2.5. Reference 17

https://docs.python.org/3/library/datetime.html#module-datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str

Proto Plus for Python Documentation

18 Chapter 2. Table of Contents

Python Module Index

P

proto.datetime_helpers, 17
proto.enums, 16
proto.fields, 16
proto.marshal, 16

19

Proto Plus for Python Documentation

20

Python Module Index

Index

C proto.enums (module), 16

copy_from() (proto.message.Message class method), PTOLO- fields (module), 16
16 proto.marshal (module), 16

ProtoEnumMeta (class in proto.enums), 16

D
R

DatetimeWithNanoseconds (class in

proto.datetime_helpers), 17 RepeatedField (class in proto.fields), 16
descriptor (proto.fields.Field attribute), 16 replace () (proto.datetime_helpers.Datetime WithNanoseconds
deserialize () (proto.message.Message class method), 17

method), 15 rfc3339 () (proto.datetime_helpers.DatetimeWithNanoseconds

method), 17

E

Enum (class in proto.enums), 16

S

serialize () (proto.message.Message class method),

F 15

Field (class in proto.fields), 16 T
from_json () (proto.message.Message class method),

15 timestamp_pb () (proto.datetime_helpers.Datetime WithNanoseconds
from rfc3339() (proto.datetime_helpers.DatetimeWithNanosecoﬁZf?s’hOd)’ 17

class method), 17 to_dict () (proto.message.Message class method), 15
from_timestamp_pb () to_Jjson () (proto.message.Message class method), 15

(proto.datetime_helpers.DatetimeWithNanosecon%
class method), 17
wrap () (proto.message.Message class method), 14
M
MapField (class in proto.fields), 16
Marshal (class in proto.marshal), 16
Message (class in proto.message), 14

N

name (proto.fields.Field attribute), 16
nanosecond (proto.datetime_helpers.Datetime WithNanoseconds
attribute), 17

P

package (proto.fields.Field attribute), 16

pb () (proto.message.Message class method), 14
pb_type (proto.fields.Field attribute), 16
proto.datetime_helpers (module), 17

21

	Installing
	Table of Contents
	Messages
	Fields
	Type Marshaling
	Status
	Reference

	Python Module Index
	Index

